Relational Contracting Inside the Firm

Ach Adhvaryu (Michigan, NBER, BREAD)
Jean-Francois Gauthier (BC)
Anant Nyshadham (BC \& NBER) Jorge Tamayo (HBS)
Trinity College Dublin

January 2019

- Incomplete contracts create value in repeated interactions both within and across firms (MacLeod \& Malcomson 1989; Baker, Gibbons, \& Murphy 1994, 2001, 2002; Levin 2003)
- "Firms are riddled with relational contracts" (Baker, Gibbons, \& Murphy 2002)
- Many organizational capabilities rely on managerial practices that in turn rest on relational contracts (Gibbons \& Henderson 2012; Blader, Gartenberg, Henderson, \& Prat 2015; Halac \& Prat 2016)
- Relational contracts may be particularly important in low-income country contexts, where 1) weak institutions often render enforcement difficult, and 2) large shocks are often uninsured
- Informal risk-sharing is a key feature of low-income economies (Coate \& Ravallion 1993; Townsend 1994, 1995; Besley 1995)
- Evidence on existence and properties of relational contracts across firms is abundant (Banerjee \& Duflo 2000; Johnson, McMillan, \& Woodruff 2002; Machiavello \& Morjaria 2015; Machiavello \& Miquel-Florensa 2017)
- Little rigorous empirical documentation of the nature of these intra-firm interactions and their importance for firm growth
- Only formal evidence we are aware of comes from lab setting (Brown, Falk, \& Fehr 2004)
- We study the informal risk sharing behavior of managers at an Indian readymade garments firm
- Absenteeism shocks are frequent and often very large; how do managers smooth production in the face of this uncertainty?
- Is managers' behavior consistent with the canonical theory of relational contracting?
- How efficient is risk sharing?
- What is the value of relational contracting in this setting?
- Ready-made garment factories in Bengaluru, India
- 2.5 years $(06 / 2013-11 / 2015)$ of daily worker-manager matched data from 123 production lines across 6 plants
- Lines consist of 65-70 workers, usually one worker to machine, each garment order lasts 20-30 days
- Managers assign workers to machines/tasks every morning conditional on who is present; they can "lend" and "borrow" workers with each other
- Worker id's, "home" line id, and daily manager/team match
- Worker level daily absenteeism
- managers' ids, behavior with regard to day-to-day "lending" and "borrowing" of workers across teams
- Absenteeism: percentage of home line absenteeism measured in (unit-level) SD units

Variables	Mean/(S.D.)
Number of home-line workers	66.24
	(16.04)
Number of workers present	60.85
(incl. transfers)	(15.33)
Number of home-line workers	56.46
present	(15.71)
Percentage of home-line workers	86.04%
present	(8.12)
Number of home-line workers	6.93
with a festival	(3.27)
Number of adjacent lines	2.88
	(0.84)
Distance in feet from	11.73
other lines	(8.01)

Absenteeism Shocks

Fact 1: Absenteeism shocks are frequent

Lines with at least a 0.5 S.D. shock

Lines with at least 1 S.D. shock
Kernel density estimate

Absenteeism Shocks

Fact 2: Absenteeism of "home line" workers has a small impact on the number of workers working on the line on a given day

Average number of workers on the line by number of workers absent

Fact 3: Managers seem to be able to mitigate the negative effects of absenteeism on productivity

Efficiency on percentage of workers present		
	(1)	(2)
	Efficiency (\%)	Efficiency (\%)
Absenteeism (\%)	$-0.0449^{* * *}$	$-0.0656^{* * *}$
	(0.0116)	(0.00924)
Observations	29919	29893
Mean	50.987	50.987
SD	16.542	16.542
UnitXfloor	Y	Y
UnitXfloorXyear	Y	Y
UnitXfloorXmonth	Y	Y
UnitXfloorXd.o.w	Y	Y
Line A	Y	Y
Styles	N	Y
Standard errors in parentheses		
* p<0.1, $* *$ p<0.05, $* * *$ p <0.01		

- From all present to mean abs. (13\%) \Rightarrow productivity $\downarrow \sim 1.7 \%$

Hard-to-smooth Absenteeism Shocks and Factory Unit Productivity

Fact 3B: Hard-to-smooth absenteeism has larger productivity impact
Efficiency on absenteeism of the line with the least absenteeism

	(1)	(2)	(3) Efficiency (\%)	(4)	(5)	(6)
Min \% of absentees	$-0.165^{* *}$	$-0.178^{* *}$	$-0.179^{* *}$			
Min nb of absentees	(0.0718)	(0.0755)	(0.0743)			
				$-0.185^{* *}$	$-0.185^{* *}$	$-0.202^{* *}$
Observations	2394	2394	2391	2394	(0.0891)	(0.0891)
Mean	51.2	51.2	51.2	51.2	51.2	2391
SD	9.4	9.4	9.4	9.4	9.4	9.4
Clustering	N	N	N	N	N	N
Unit	Y	Y	Y	Y	Y	Y
year	Y	Y	Y	Y	Y	Y
month	Y	Y	Y	Y	Y	Y
day of the week	Y	Y	Y	Y	Y	Y
UnitXyear	Y	Y	Y	Y	Y	Y
UnitXmonth	N	Y	Y	N	N	Y
UnitXd.o.w	N	N	Y	N	N	Y
Standard						

[^0]- From all present to mean abs. (13\%) \Rightarrow productivity $\downarrow \sim 5 \%$

Qualitative Evidence of Relational Contracts Between Managers

Some excerpts from our conversations with managers:
When facing absenteeism, a manager will try to get workers from other managers by talking to them directly.

Usually, managers don't need to take additional efforts to convince other managers, as everyone understands the situation.

Co-operation is usually assumed as a professional practice. The managers share workers with an understanding that they might need to borrow workers in future.

Managers form relationships mainly through being on the same floor [spatial contiguity] and understanding that co-operation is mutually beneficial.

- 77% of trades occur on the same floor; 54% of trades happen between adjacent lines
- Managers do 80% of all their trades with the same 3 partners despite having on average 22 potential partners
- Managers entirely forgo 11 potential partnerships on average, for a total of 655 inactive partnerships among 1352 potential partners
- 13.35% of active partnerships "break" (active $=$ the pair traded at least one worker a week for one consecutive month; break = lapse in trading for more than 6 months)
- 46% of active partnerships never stop trading for more than a month
- When a manager leaves, 74% of active partnerships break for at least a month

Existence of Primary Trading Partners

Fact 4: Managers have primary trading partners

Balanced Relationships

Fact 5: Managers switch between being principal and agents, balance lending and borrowing

Average number of net trades in and out by partner rank

Fact 6: The most common partner is the same month after month

Percent of lines for which the main partner is the same for $\mathrm{x} \%$ of months

Trade outs

Trade ins

Distance between Partners

Fact 7: The main partners are closer to each other on the factory floor

Quitting affects trade

Fact 8: When a manager who quits, his main trading partners are slow to trade with his replacement

Number of trade days

Number of workers traded in and out

- Two Lines $k=A, B$ that live forever:
- Random (identically distributed but independent) states for each lines, $y_{t}^{k} \in\left\{y_{A, t}, y_{B, t}\right\}$.
- The states are number of "home-line" workers that show-up.
- $y_{i, t} \in[y, \bar{y}], y_{i, t} \sim G_{i}(\cdot)$.
- $G_{i}(\cdot)$ independently across time and of the state of their peers $y_{-i, t}$, $G_{-i}(\cdot)$.
- Distribution functions are symmetric, $G_{i}(\cdot)=G(\cdot)$, for $i \in \mathcal{K}$.
- Time is discrete, indexed by existing $t=1,2, \ldots$,
- Production fuction $f(\cdot)$ (increasing and concave).
- Input: net number of workers.
- In each period, managers are matched randomly and establish bilateral relationships.
- In a potentially ongoing relationship, manager i agrees to help j if i is in a better state (i.e., more present "home-line" workers) than j; in return, j agrees to help i when their states are reversed in the future
- A transaction cost exists between potential partners which determines whether a particular trade is worth completing
- A match can be dissolved endogenously if either party in the current match decides to leave
- Managerial type (fixed, private info): reliable (R) and Unreliable (U)
- Measure of R-type managers is γ_{0}; measure of U-type is $1-\gamma_{0}$
- R-type managers can always help their trading partner when their state is better than their partner's
- U-types are subject to random shocks that make lending impossible
- The probability of a shock conditional on the manager being a U-type, ρ, is known to both parties and constant over time
- After τ trades from i to j, the probability manager j is reliable is

$$
\gamma_{\tau}^{i}=\frac{\gamma_{0}}{\gamma_{0}+(1-\rho)^{\tau}\left(1-\gamma_{0}\right)}
$$

- Suppose i 's state in period t is better than j 's; if i does not shirk, payoffs for i from t onward are

$$
U_{i, t}^{R}\left(\boldsymbol{\theta}_{t} ; \gamma_{\tau}^{i}\right)=f\left(y_{i, t}-\theta_{i j, t}\right)-c_{i j}+\delta U_{i, t+1}^{R}\left(\boldsymbol{\theta}_{t+1} ; \gamma_{\tau}^{i}\right)
$$

- If i shirks, payoffs from t onward are (where $V\left(n_{i}\right)$ is i 's outside option)

$$
U_{A, t}^{S}\left(\boldsymbol{\theta}_{t} ; \gamma_{\tau}^{i}\right)=f\left(y_{i, t}\right)+\delta V\left(n_{i}\right)
$$

- Incentive compatibility constraint (no shirking condition) is

$$
f\left(y_{i, t}\right)-f\left(y_{i, t}-\theta_{i j}\right)+c_{i j} \leq \delta\left(U_{i, t+1}^{R}(\boldsymbol{\theta} ; \tau)-V(n)\right)
$$

Characterizing the Symmetric Stationary Relational Contract

Proposition: A stationary contract exists and is uniquely defined by

$$
\theta_{i j}^{*}=\min \left\{\hat{\theta}_{i j}, H\left(y_{i}, c_{i j}, \frac{\delta\left(\bar{U}^{R}\left(\boldsymbol{\theta}^{*}\right)-V\right)}{1-\delta}\right)\right\}
$$

where $H(\cdot)$ is such that $\left(y_{i}, c_{i j}, \frac{\delta\left(\bar{U}^{R}\left(\boldsymbol{\theta}^{*}\right)-v\right)}{1-\delta}\right)$ satisfy

$$
\Delta\left(y_{i}, x, H\left(y_{i}, w\right)\right) \equiv f\left(y_{i}\right)-f\left(y_{i}-\theta_{i j}^{*}\right)+c_{i j}-\delta \frac{\left(\bar{U}^{R}\left(\boldsymbol{\theta}^{*}\right)-V\right)}{1-\delta}=0
$$

where, $\hat{\theta}_{i j}$, is the first best allocation, equal to $\hat{\theta}_{i j}=\frac{y_{i}-y_{j}}{2}$

- Prediction 1. The number of workers lent from i to j increases with i 's state and decreases with j 's state
- Prediction 2. The number of workers lent from i to j decreases with the value of i 's outside option
- Prediction 3. The number of workers lent from i to j decreases as the $i j$-specific transaction cost rises
- Prediction 4. The frequency/probability of trades decreases with the $i j$-specific transaction cost
- Prediction 5. Along the transition to steady state, the number of workers lent from i to j increases with the number of completed trades between i and j

Empirical Tests of Theory

$$
\text { Balance }=\alpha+\beta_{1} \text { Present } A+\beta_{2} \text { Present } B+\Phi+\varepsilon
$$

- Sample restriction: A is in a better state (\% of "home-line" workers present) than B
- PresentA is the percentage of home-line workers present in SD units for the line A (analogous for B)
- Φ is a matrix of controls and fixed effects
- Balance: number of workers lent - number of workers borrowed (net lending)

Prediction 1: All Trading Partners

Prediction 1: $\frac{\partial \theta_{i j}^{*}}{\partial y_{i}}>0, \frac{\partial \theta_{i j}^{*}}{\partial y_{j}}<0$

	(1) Balance	(2) Balance	(3) Balance	(4) Balance
SD \% Present A	$0.0496^{* * *}$	$0.0555^{* * *}$	$0.0545^{* * *}$	$0.0503^{* * *}$
	(0.00649)	(0.00692)	(0.00699)	(0.00727)
SD \% Present B	$-0.0230^{* * *}$	$-0.0207^{* * *}$	$-0.0201^{* * *}$	$-0.0162^{* * *}$
	(0.00286)	(0.00282)	(0.00288)	(0.00336)
Observations	198193	198191	198191	198188
Mean of Y	.028	.028	.028	.028
SD	1.276	1.276	1.276	1.276
Controls	Y	Y	Y	Y
UnitXfloor	N	Y	Y	Y
UnitXfloorXyear	N	Y	Y	Y
UnitXfloorXmonth	N	Y	Y	Y
UnitXfloorXweek	N	Y	Y	Y
Line A,B	N	N	Y	Y
Styles	N	N	N	Y
Stand				

Standard errors in parentheses

* $\mathrm{p}<0.1,{ }^{* *} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$
- \% Present $A \uparrow \sim 10$ workers $\Rightarrow A$ lends 1 additional worker on net $(0.05 \times 3.2 \times 6.5) \approx 1$
- \% Present $B \downarrow \sim 10$ workers $\Rightarrow A$ lends $1 / 3$ additional worker on net $(0.016 \times 3.2 \times 6.5) \approx 0.33$

Prediction 1: Primary trading partners

Prediction 1-Primary trading partners:		$\frac{\partial \theta_{i j}^{*}}{\partial y_{i}}>0$,	$\frac{\partial \theta_{i j}^{*}}{\partial y_{j}}<0$	
	Balance	Balance	Balance	Balance
SD \% Present A	$0.231^{* * *}$	$0.245^{* * *}$	$0.252^{* * *}$	$0.239^{* * *}$
	(0.0320)	(0.0341)	(0.0351)	(0.0390)
SD \% Present B	$-0.101^{* * *}$	$-0.108^{* * *}$	$-0.101^{* * *}$	$-0.0678^{* * *}$
	(0.0162)	(0.0177)	(0.0180)	(0.0206)
Observations	31824	31816	31816	31763
Mean of Y	.113	.113	.113	.113
SD	2.851	2.851	2.851	2.851
Controls	Y	Y	Y	Y
UnitXfloor	N	Y	Y	Y
UnitXfloorXyear	N	Y	Y	Y
UnitXfloorXmonth	N	Y	Y	Y
UnitXfloorXweek	N	Y	Y	Y
Line A,B	N	N	Y	Y
Styles	N	N	N	Y
Standard errors in parentheses				
* p<0.1, ** p<0.05, $* * *$ p<0.01				

- \% Present $A \uparrow \sim 10$ workers $\Rightarrow A$ lends 1.2 additional workers on net
- \% Present $B \downarrow \sim 10$ workers $\Rightarrow A$ lends $1 / 3$ additional worker on net

Prediction 2: $\frac{\partial \theta_{i j}^{*}}{\partial O S_{i}}<0$				
	(1)	(2)	(3)	(4)
	Balance	Balance	Balance	Balance
SD \% Present A	0.122***	0.128***	0.149***	0.156***
	(0.0171)	(0.0176)	(0.0522)	(0.0520)
SD \% Present B	-0.0441***	-0.0449***	-0.0440***	-0.0449***
	(0.00643)	(0.00647)	(0.00643)	(0.00647)
Outside Option	-0.0450***	-0.0456***	-0.0414***	-0.0418***
	(0.0102)	(0.0101)	(0.0118)	(0.0118)
Interaction			-0.0110	-0.0116
			(0.0174)	(0.0173)
Observations	56785	56785	56785	56785
Mean of Y	. 028	. 028	. 028	. 028
SD	1.276	1.276	1.276	1.276
Controls	Y	Y	Y	Y
Year	N	Y	N	Y
Month	N	Y	N	Y
Week	N	Y	N	Y
Standard errors in parentheses				

Outside option: number of adjacent lines

	Prediction 3: $\frac{\partial \theta_{i j}^{*}}{\partial \text { Distance }}<0$			
	(1)	(2)	(3)	(4)
	Balance	Balance	Balance	Balance
SD \% Present A	0.121***	0.121***	0.124***	0.119***
	(0.0171)	(0.0177)	(0.0180)	(0.0176)
SD \% Present B	-0.0446***	-0.0347***	-0.0345***	-0.0204***
	(0.00645)	(0.00665)	(0.00677)	(0.00736)
SD Distance	-0.0249***	-0.0268***	-0.0481***	-0.0456***
	(0.00794)	(0.00792)	(0.00918)	(0.0104)
Observations	56785	56777	56777	56747
Mean of Y	. 028	. 028	. 028	. 028
SD	1.276	1.276	1.276	1.276
Controls	Y	Y	Y	Y
UnitXfloor	N	Y	Y	Y
UnitXfloorXyear	N	Y	Y	Y
UnitXfloorXmonth	N	Y	Y	Y
UnitXfloorXweek	N	Y	Y	Y
Line A, B	N	N	Y	Y
Styles	N	N	N	Y

[^1]| | Prediction 1: $\frac{\partial \operatorname{Pr}\left(\theta_{i j}^{*}>0\right)}{\partial \operatorname{Distance}} \ll 0$ | | | |
| :--- | :---: | :---: | :---: | :---: |
| | (1)
 Ever Trade | (2)
 Ever Trade | (3)
 Ever Trade | (4)
 Ever Trade |
| SD Distance | $-0.0187^{* * *}$ | $-0.0135^{* * *}$ | | |
| | (0.00303) | (0.00321) | | |
| Different floor | | | $-0.436^{* * *}$ | $-0.458^{* * *}$ |
| | | | (0.0262) | (0.0269) |
| Observations | 368 | 368 | 1300 | 1300 |
| Mean of Y | .486 | .486 | .486 | .486 |
| SD | .5 | .5 | .5 | .5 |
| Controls | N | N | N | N |
| UnitXfloor | N | Y | N | Y |
| Line A,B | N | Y | N | Y |
| Standard | | | | |

Standard errors in parentheses

* $\mathrm{p}<0.1,{ }^{* *} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$
- Ever trade $=\alpha+\beta$ Distance $+\Phi+\varepsilon$
- Results also hold when we use a Probit regression

Prediction 5: $\frac{\partial \theta_{i j}^{*}}{\partial A g e}>0$

	(1) Balance	(2) Balance	(3) Balance	(4) Balance
SD \% Present A	$0.0496^{* * *}$	$0.0566^{* * *}$	$0.0554^{* * *}$	$0.0500^{* * *}$
	(0.00650)	(0.00693)	(0.00700)	(0.00728)
SD \% Present B	$-0.0233^{* * *}$	$-0.0214^{* * *}$	$-0.0208^{* * *}$	$-0.0167^{* * *}$
	(0.00286)	(0.00282)	(0.00288)	(0.00335)
Age	$0.0755^{* * *}$	$0.0903^{* * *}$	$0.0901^{* * *}$	$0.0883^{* * *}$
	(0.0904)	(0.00993)	(0.00995)	(0.00992)
Observations	198193	198191	198191	198188
Mean of Y	.028	.028	.028	.028
SD	1.276	1.276	1.276	1.276
Controls	Y	Y	Y	Y
UnitXfloor	N	Y	Y	Y
UnitXfloorXYear	N	Y	Y	Y
UnitXfloorXmonth	N	Y	Y	Y
UnitXfloorXweek	N	Y	Y	Y
Line A,B	N	N	Y	Y
Styles	N	N	N	Y

Standard errors in parentheses
$* \mathrm{p}<0.1,{ }^{* *} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$

Absenteeism may be endogenous to relationship formation/growth and productivity

- We instrument absenteeism on a line at date t by the number of workers on that line that are from a state with an important cultural festival that day
- Cultural groups are localized and they celebrate different festivals
- We use the workers' language to infer which state they are likely to be originally from
- Relational contracting allows managers to effectively smooth the productivity impacts of large and frequent shocks to absenteeism
- We study the nature of these contracts by adapting a standard model to our context and testing its predictions using granular data on absenteeism and dynamic worker-team matches
- In particular, we show that trades depend on both lines' absenteeism; lines' outside options matter; transaction costs matter; and that relationships mature with age
- Relational contracting has a sizable risk sharing value in this context

Thanks - comments most welcome! adhvaryu@umich.edu
www.achadhvaryu.com | www.goodbusinesslab.org

[^0]: Standard errors in parentheses

 * $\mathrm{p}<0.1,{ }^{* *} \mathrm{p}<0.05$, *** $\mathrm{p}<0.01$

[^1]: Standard errors in parentheses

 * $\mathrm{p}<0.1,{ }^{* *} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$

